Wind Error Modeling - Impact on CD&R

Stephane Mondoloni, Ph.D.

CSSI Inc.

Presented at: DAG Workshop NASA Ames

May 24, 2000

Trajectory Prediction Uncertainty

- Sources of uncertainty (from NASA TP-1998-208439)
 - Aircraft state estimation
 - Trajectory modeling errors (performance, procedures, atmospherics)
 - Clearance conformance
- "The first and most significant error source is atmospheric prediction which has a complex effect on trajectory prediction accuracy"
- Use of airborne conflict tools reduce effect of tracking error
- This presentation will focus on wind uncertainty

Models of Propagation of Uncertainty

• Linearly growing along-track positional uncertainty applied in the literature

- E.g., Paielli, Russell, A., Erzberger, Heinz, "Conflict Probability Estimation for Free Flight", J. of Guidance, Control and Dynamics vol. 20 No. 3, May-June 1997, pp. 588-596
- Modeled as a Gaussian with linearly growing rms value (0.25 nmi/ min)
- Cross-track error modeled as zero norm Gaussian with an rms 0.5 to 1 nmi
- Some model the above as a bias error in along-track speed

Effect on Conflict Probability

Monte-Carlo simulation can duplicate results for a crossing conflict

Maneuvers affect probability

- Vector at t=0 imposed on 90°conflict case
- Maneuver decreases likelihood of encounter.
- Closer maneuvers require larger maneuvers

Tradeoff of Strategic versus Tactical Resolution

- Early resolution is lower cost, but has higher false alarms
- Analyze tradeoff of immediate resolution versus wait and see resolution

Seek Consistent Model of Wind Error

• Assume a generic auto-correlation function for along-track wind error (w) (e.g., stationary process, non-periodic error)

$$() = E[w(t)w(t +)]$$

$$= \frac{1}{\langle w^2 \rangle} \lim_{T \to 0} w(t)w(t +)d$$

• For instance:

 Obviously, wind errors close in time are highly correlated, correlation decreases as they are separated in time

Positional Uncertainty - Limits

Position uncertainty easily obtained through integration of wind uncertainty

$$x(T) = w(t)dt$$

• One can show, for small times:

$$\overline{x(T)^2} \quad 2\overline{w^2}^T (T -)d$$

$$\overline{w^2}T^2 \qquad \text{Linear RMS !}$$

And for large times:

$$\overline{x(T)^2}$$
 $2\overline{w^2}T$ ()d $2\overline{w^2}T(const.)$ Square-root RMS

Positional Uncertainty Data

Extracted from: "Using Air-Ground Data Link to Improve Air Traffic Management Decision Support System Performance", Wanke, C., 1st USA/Europe ATM Seminar, Saclay, 1997.

Example Auto-correlation Functions

Both have the same wind rms () & close integrated position error, but noise signal can be radically different...

Resulting Error Signal

Typically reported quantities are identical, but radically different signals. Implications for conflict probability estimation.

Monte-Carlo Simulation of Resolution Scenario

- Simulate simple conflict scenarios with different wind auto-correlation functions
- Compare strategic cost of resolution (early versus late)
- Simulate flight from t=0 to a maneuver, then obtain a vector that reduces the probability of conflict to an acceptable level
- Obtain expected value of maneuver at a future time

Use of Auto-correlation Function in Monte-Carlo Simulations

- Given wind auto-correlation function:
 - Obtain power spectral density function
 - Employ spectral factorization to obtain a minimum phase, rational transfer function for a shaping filter (G(s))

Strategic Resolution Maneuvers

(Recall that A was the slowly varying signal)

Knowledge of measured wind and properties reduces strategic resolution cost. (More so if higher correlation.)

Cost of Maneuvers

Further Complications

- Assumption of *stationary* process may be incorrect, is it quasi-stationary?
 - From [7], we know that large wind errors can occur over certain regions and that these do persist
 - From [9], we know that turbulence (a high frequency component of the wind error) can be modeled as a non-stationary random process
- Discussion focused on along-track error, problem could be re-formulated as positional auto-correlation function to include multiple aircraft interactions
- Discrete errors such as the imprecise timing of gust fronts

Conclusions

- Validity of linear growth of positional uncertainty needs to be examined for longer time horizons
- Statistical properties of wind error affect conflict probe's time horizon and derived benefits
 - Conventional measures of wind forecasting error such as RMS are insufficient to determine the performance of CD&R tools
- Obtaining an understanding of the statistical properties of the wind error will allow us to:
 - Credibly perform the strategic versus tactical conflict resolution tradeoff
 - Develop compensators for the wind errors, thereby improving conflict prediction

References

- [1] Erzberger, Heinz, Paielli, Russell A., Isaacson, Douglas R., Eshowl, Michelle, "Conflict Detection and Resolution In the Presence of Prediction Error", Presented at the USA/Europe Air Traffic Management R&D Seminar, Saclay, France, June 17-20, 1997.
- [2] Erzberger, Heinz, "CTAS/UPR Conflict Probe", Briefing for RTCA Select Committee on Free Flight Implementation, February, 1997
- [3] Paielli, Russell, A., Erzberger, Heinz, "Conflict Probability Estimation for Free Flight", J. of Guidance, Control and Dynamics vol. 20 No. 3, May-June 1997, pp. 588-596
- [4] Wanke, Craig, "Using Air-Ground Data Link to Improve Air Traffic Management Decision Support System Performance", Presented at the USA/Europe Air Traffic Management
- [5]Yang, Lee, Kuchar, James, K., "Using Intent Information in Probabilistic Conflict Analysis", *AIAA Guidance, Navigation and Control Conference*, Boston, MA, 1998, pp. 797-806R&D Seminar, Saclay, France, June 17-20, 1997.

References (cont'd)

- [6] Williams, D., Green, S., "Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process", NASA/TP-1998-208439, July 1998.
- [7] Cole, R., Green, S., et al, "Wind Prediction Accuracy for Air Traffic Management Decision Support Tools", 3rd USA/Europe ATM R&D Seminar, Napoli, Italy, June 2000.
- [8] Benjamin, S., Brown, J., et al., "Aviation Forecasts From the RUC-2", 8th Conference on Aviation, Range and Meteorology, Dallas, Jan. 1999.
- [9] Press, H., Meadows, M., Hadlock, I., "A Re-evaluation of Data on Atmospheric Turbulence and Airplane Gust Loads for Application in Spectral Calculations", NACA TR- 1272, 1955.
- [10] Ballin, M, Erzberger, H., "An analysis of Landing Rates and Separations at the Dallas/Forth Worth International Airport", NASA TM-110397, July, 1996.